
ESPC Workshop
September 2010

Using GPUs for Weather and Climate
Models

Mark Govett
ESRL/GSD

ESPC Workshop
September 2010

GPU / Multi-core Technology

GPU: 2008
933Gflops

150W

CPU:2008
~45 Gflops

160W

 1.2 TeraFlops
 8x increase in
double precision
 2x increase in
memory bandwidth
 Error correcting
memory

NVIDIA: Tesla (2008)NVIDIA: Fermi (2010)

• NVIDIA: Fermi chip first to support HPC
– Formed partnerships with Cray, IBM on HPC systems
– #2 system on TOP500 (Fermi, China)

• AMD/ATI: Primarily graphics currently
– #7 system on TOP500 (AMD-Radeon, China)
– Fusion chip in 2011 (5 TeraFlops)

• Intel: Knights Ferry (2011), 32-64 cores

ESPC Workshop
September 2010

CPU – GPU Comparison
CHIP
TYPE

CPU
Nahalem

GPU
NVIDIA Tesla

GPU
NVIDIA Fermi

Cores 4 240 480

Parallelism Medium Grain Fine Grain Fine Grain

Performance
Single Precision

Double
Precision

47 Gflops
23 GFlops

933 GFlops
60 GFlops

1040 GFlops
500 GFlops

Power
Consumption

130W 150W 220W

Memory 24-48 GBytes 1-2 GBytes 3-6 GBytes

ESPC Workshop
September 2010

Next Generation Weather Models
• Models being designed for global cloud resolving scales (3-4km)

• Requires PetaFlop Computers

DOE Jaguar System
- 2.3 PetaFlops

- 250,000 CPUs

- 284 cabinets

- 7-10 MW power

- ~ $50-100 million

- Reliability in hours

GPU System
- 1.0 PetaFlop

- 1000 NVIDIA GPUs

- 10 cabinets

- 0.5 MW power

- ~ $5-10 million

- Reliability in weeks

• Large CPU systems (~100 thousand cores) are unrealistic for
operational weather forecasting

• Power, cooling, reliability, cost

• Application scaling

Valmont
Power Plant

~200 MegaWatts
Boulder, CO

ESPC Workshop
September 2010

Programming GPUs

• Languages
– CUDA-C: available from NVIDIA

– OpenCL: industry standard (NVIDIA, AMD, Apple,
etc)

– Fortran: PGI, CAPS, F2C-ACC compilers

• Fine grain (loop level) parallelism
– Needed to keep 480+ cores busy

– Code modifications, restructuring may be
necessary to get good performance

ESPC Workshop
September 2010

Application Performance

• 100x is possible on highly scalable
codes

• Efficient use of memory is critical
to good performance
– 1-2 cycles to access shared memory

– Hundreds of cycles to access global
memory

Tesla (2008)
• 16K shared memory
• 16K constant memory
• 2GB global memory

CPU Host

GPU Device

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

GPU Multi-layer Memory

ESPC Workshop
September 2010

Execution Flow-control
(select routines)

r1 r2 r3 r4

GPU

r1 r2 r3 r4

run-tim
e

routine

– Copy between CPU and GPU is non-
trivial
• Performance benefits can be overshadowed

by the copy

• WRF demonstrated 20x improvement , 5x
overall (Michalakes, 2009)

ESPC Workshop
September 2010

Execution Flow-control
(run everything on GPUs)

init dynamics physics output

GPU
dynamics

– Eliminates copy every model time step

– CPU-GPU copies only needed for input /output, inter-
process communications

– JMA: ASUCA model, demonstrated 70x performance
improvement

• Rewrote the code in CUDA

GPU
Physics

CPU

GPU

ESPC Workshop
September 2010

Non-hydrostatic Icosahedral
Model (NIM)

– Global Weather Forecast Model

– Under development at NOAA Earth System
Research Laboratory
• Dynamics complete, physics integration in progress

– Non-hydrostatic

– Uniform, hexagonal-based, icosahedral grid

– Plan to run tests at 3.5km global in late 2010
• Cloud resolving scale

• Model validation using AquaPlanet

ESPC Workshop
September 2010

NIM Code Parallelization (2009)
• Developed the Fortran-to-CUDA compiler (F2C-ACC)

– Commercial compilers were not available in 2008
– Converts Fortran 90 into C or CUDA-C
– Some hand tuning was necessary

• Parallelized NIM model dynamics
– Demonstrated 34x performance boost over best CPU

run time
• Tesla Chip, Intel Harpertown (2008)
• Result for a single GPU
• Communications only needed for I/O

• Physics parallelization planned CPU#1

Input Output

Single GPU
communications

GPU#1

ESPC Workshop
September 2010

NIM Parallelization Efforts (2010)

CPU#1 CPU#2

GPU to GPU
communications

SMS

GPU#1 GPU#2

• Run on Fermi GPUs
– ~ 2x improvement over Tesla

• Evaluate Fortran GPU compilers
– 34x is the benchmark

• Run on Multiple GPUs
– Modified F2C-ACC GPU compiler

– Uses MPI-based Scalable Modeling System (SMS)

– Parallelization is mostly complete

ESPC Workshop
September 2010

NIM Parallel Performance
• Application scaling is limited by the fraction of time spent

doing inter-process communications
– Minimize data volume and frequency

– Overlap communications with computations

• Plan to increase the number of GPUs as we increase the
model resolution
– Maintain about 8000 horizontal points per GPU

• About 5000 GPUs will be needed to run 3.5 KM NIM at ~ 2
percent of real-time

GPU time Inter-process communicationsInput / output time

time

Points /
GPU

ESPC Workshop
September 2010

EARTH
 SYSTEM

 M
O

D
ELS

GPUs and the Challenges Ahead
– Performance and Portability

• CPUs and GPUs maximize performance differently
• Challenge to maintain a single source

– New codes are easier to parallelize
• NIM was designed to run on GPUs
• Collaboration between model developers, computer scientists

– Legacy codes will be harder to convert
• Similar to transition from Vector to MPPs

AMD
GPU

OCEAN

FIM

GFS

WRF

CPU / GPU
Architectures

Modeling
Systems

NIM

chemistry

dynamics

physics

Fortran
Source

CPU/ GPU
Compilers

&
Tools

Intel
Multi-core

NVIDIA
GPU

Traditional
CPUs

NOAA

Navy

NSF

DOE

Computing
Facilities

ESPC Workshop
September 2010

Final Thoughts
• HPC transitions about every decade

– Vector -> MPP -> COTS Clusters -> GPUs
• 20x cost savings: hardware, power, infrastructure

• Partnerships
– Algorithms, tools, compilers, systems, chips

• Recent DARPA announcement
– 25 million to advance GPU computing

– We have had success in GPU computing
• Compiler development, NIM model parallelization

• Collaborations with NVIDIA, AMD, PGI, CAPS

	Using GPUs for Weather and Climate Models
	GPU / Multi-core Technology
	CPU – GPU Comparison
	Next Generation Weather Models
	Programming GPUs
	Application Performance
	Execution Flow-control�(select routines)
	Execution Flow-control�(run everything on GPUs)
	Non-hydrostatic Icosahedral �Model (NIM)
	NIM Code Parallelization (2009)
	NIM Parallelization Efforts (2010)
	NIM Parallel Performance
	�GPUs and the Challenges Ahead�
	Final Thoughts

